
Complex Analysis II Chapter 1 Lecture Notes Spring 2024

§ 1 The Algebra of Complex Numbers

1.1 Arithmetic Operations

• The field C of complex numbers is obtained by adjoining the imaginary unit i to the field R of
real numbers. The defining property of i is

i2 + 1 = 0

A complex number has the form

z = a + ib (1)

where (a, b) ∈ R2, the + symbol represents the process of addition, and ib is a shortened notation
for the multiplication of i and b.

a in Eq. (1) is called the real part of z, written a = Re (z) .

b in Eq. (1) is called the imaginary part of z, written b = Im (z) .

If b = Im (z) = 0, z is said to be purely real. If a = Re (z) = 0, z is said to be purely imaginary.

Two complex numbers z1 and z2 are equal iff{
Re (z1) = Re (z2)

Im (z1) = Im (z2)
(2)

Let z1 = a1 + ib1 and z2 = a2 + ib2, with (a1, a2, b1, b2) ∈ R4.

• Addition in C is defined as follows.

z1 + z2 = (a1 + ib1) + (a2 + ib2) = (a1 + a2) + i(b1 + b2) (3)

• Multiplication in C is defined in the following way.

z1z2 = (a1 + ib1) (a2 + ib2) = (a1a2 − b1b2) + i(a1b2 + a2b1) (4)

Field structure of C
• It is clear from the above that C is closed under addition and multiplication

• It is also easy to check that addition and multiplication are associative and commutative, and
that multiplication is distributive over addition

• One can easily verify that the identity element for addition is 0 = 0 + i · 0. The identity
element for multiplication is 1 = 1 + i · 0
• For any complex number z = a + ib, −z = −a + i(−b) is its additive inverse. What about
the inverse for multiplication? To find out, let us take a small detour and construct the operation
of division in C.
Let z1 = a1 + ib1 and z2 = a2 + ib2, with z2 ̸= 0. If z1/z2 is a complex number z3 = a3 + ib3,
then

a1 + ib1 = (a2 + ib2) (a3 + ib3) = (a2a3 − b2b3) + i (a2b3 + a3b2)

⇐⇒

{
a1 = a2a3 − b2b3

b1 = a2b3 + a3b2
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This is a linear system of equations, which has a unique solution since a22 + b22 ̸= 0. The solution
is 

a3 =
a1a2 + b1b2
a22 + b22

b3 =
a2b1 − a1b2
a22 + b22

Hence

z1
z2

=
a1 + ib1
a2 + ib2

=
a1a2 + b1b2
a22 + b22

+ i
a2b1 − a1b2
a22 + b22

(5)

It is now clear that any nonzero complex number z = a + ib has a multiplicative inverse, given
by

1

z
=

a − ib

a2 + b2
(6)

We have now completed our verification of the field structure of C.

Important operations

1.4 Conjugation and Modulus

Definition For any complex number z = a + ib, the complex number w = a − ib, is called
the complex conjugate of z, written w = z.

• Conjugation is an involution: z = w = z.

• The real and imaginary parts of a complex number z can be expressed in terms of z and z
only:

Re (z) =
z + z

2
, Im (z) =

z − z

2i
(7)

• It is easy to verify that if z1 and z2 are two complex numbers,

z1 + z2 = z1 + z2 , z1z2 = z1z2 (8)

If z2 ̸= 0, the latter implies (
z1
z2

)
=

z1
z2

Application: Consider the polynomial equation

anz
n + an−1z

n−1 + · · ·+ a1z + a0 = 0

Let w be a solution to that equation. Then w̄ solves

ānz
n + ān−1z

n−1 + · · ·+ ā1z + ā0 = 0

This proves that the nonreal roots of a polynomial equation with real coefficients occur in complex
conjugate pairs.
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Definition For any complex number z = a + ib, zz̄ = a2 + b2 ≥ 0. We define zz̄ = |z|2, where
|z| =

√
a2 + b2 is called the modulus of z.

• Note that |z | = |z|, and the multiplicative inverse of any z ̸= 0 can thus be written in the
concise form

1

z
=

z̄

|z|2
(9)

• For all z ∈ C, −|z| ≤ Re (z) ≤ |z|, and −|z| ≤ Im (z) ≤ |z|.
• Let (z1, z2) ∈ C2

|z1z2|2 = z1z2z1z2 = z1z̄1z2z̄2 = |z1|2|z2|2

from which we conclude that

|z1z2| = |z1||z2| (10)

and, if z2 ̸= 0 ∣∣∣∣z1z2
∣∣∣∣ = |z1|

|z2|
(11)

• Let (z1, z2) ∈ C2

|z1+z2|2 = (z1 + z2) (z1 + z2) = z1z̄1+z1z̄2+z2z̄1+z2z̄2 = |z1|2+ |z2|2+2Re (z1z̄2) ≤ (|z1|+ |z2|)2

Hence,

|z1 + z2| ≤ |z1|+ |z2| (12)

This is the well-known triangle inequality in the context of complex numbers. We will see its
geometric interpretation shortly.

1.2 Square Roots

Definition The square root w = x + iy of any complex number z = a + ib must satisfy

(x+ iy)2 = z ⇐⇒

{
x2 − y2 = a

2xy = b

Combining the two equations in the system, we find

a2 + b2 =
(
x2 − y2

)2
+ 4x2y2 =

(
x2 + y2

)2
Hence x2 + y2 =

√
a2 + b2, and from the first equation in the system, we have

x2 =
1

2

(
a+

√
a2 + b2

)
, y2 =

1

2

(
−a+

√
a2 + b2

)
and from the second equation 2xy = b, we must select x and y so that their product xy has the
sign of b. This leads to the general solution :

w = x+ iy =
√
a+ ib = ±


√

a+
√

a2 + b2

2
+ i

b

|b|

√
−a+

√
a2 + b2

2

 , b ̸= 0 (13)

The situation b = 0 corresponds to the square roots of real numbers, and the expressions are

w = ±
√
a if a ≥ 0 , w = ±i

√
−a if a < 0, b = 0 (14)

The square root of any complex number has two opposite values, which coincide only if a+ib = 0.
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§ 2 The Geometric Representation of Complex Numbers

2.1 Geometric Addition and Multiplication

• Complex numbers can be represented as vectors in R2 in the Cartesian way, the x-axis corre-
sponding to the real part of the number, and the y-axis corresponding to the imaginary part. The
plane with orthogonal axes given by the real part and the imaginary part is called the complex
plane.

The addition of two complex numbers can be viewed as vector addition in the complex plane.
The inequality |z1 + z2| ≤ |z1| + |z2| has a clear meaning in this context, since |z1|, |z2| and
|z1 + z2| are the lengths of all 3 sides of the triangle in Figure 1.

In the complex plane, z and z̄ lie symmetrically with respect to the real axis.

• Re (z) and Im (z) are the Cartesian coordinates of the representation of z in the complex plane.
One may also consider polar coordinates (r, θ) to represent z, i.e. such that

z = a+ ib = r cos θ + ir sin θ = r (cos θ + i sin θ)

Clearly, r = |z|. The polar angle θ is called the argument of z.

Now, let z1 = r1 (cos θ1 + i sin θ1) and z2 = r2 (cos θ2 + i sin θ2)

z1z2 = r1r2 [(cos θ1 cos θ2 − sin θ1 sin θ2) + i (cos θ1 sin θ2 + sin θ1 cos θ2)]

= r1r2 [cos (θ1 + θ2) + i sin (θ1 + θ2)]

Complex numbers are multiplied by multiplying their lengths and adding their angles.
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2.2 The Binomial Equation

• The polar representation is particularly convenient to evaluate the powers of a complex number
z. Indeed, we have just shown that for z = r (cos θ + i sin θ) ,

zn = rn [cos (nθ) + i sin (nθ)] (15)

For |z| = 1, we recognize the well-known de Moivre’s formula:

(cos θ + i sin θ)n = cos (nθ) + i sin (nθ) (16)

Observe also that from the equality 1/z = z̄/|z|2, we have

1

z
=

1

r
(cos θ − i sin θ) =

1

r
[cos(−θ) + i sin(−θ)] = r−1 [cos(−θ) + i sin(−θ)]

so that zn = rn [cos (nθ) + i sin (nθ)] holds also for negative integers n.

• The nth root w of a complex number z = r (cos θ + i sin θ) can be readily computed using this
representation:

Let w = ρ (cos γ + i sin γ) , with (ρ, γ) ∈ R+ × R, such that

wn = z ⇐⇒ ρn [cos (nγ) + i sin (nγ)] = r (cos θ + i sin θ)

We obtain the n different nth roots of z by settingρ = n
√
r

γ =
θ

n
+

2πk

n
, k = 0, 1, . . . , n− 1

(17)

i.e.

w = n
√
r

[
cos

(
θ

n
+

2πk

n

)
+ i sin

(
θ

n
+

2πk

n

)]
, k = 0, 1, . . . , n− 1

In the complex plane, the n w’s are the vertices of a regular polygon with n sides.

• The well-known case of the nth roots of unity correspond to z = 1. If we set

w = cos

(
2π

n

)
+ i sin

(
2π

n

)
then the nth roots of 1 are 1, w, w2, . . . , wn−1.

2.4 The Spherical Representation

• We will soon see that it is often useful to consider the set Ĉ = C ∪ {∞}. The symbol ∞
represents infinity, and is connected to finite numbers in the following way:

(1) for all finite z, z +∞ = ∞+ z = ∞;

(2) for all z ̸= 0 in Ĉ, z ·∞ = ∞· z = ∞. Furthermore, we adopt the convention that for z ̸= 0

in Ĉ, z/0 = ∞, and for z ∈ C, z/∞ = 0.

• ∞ cannot be represented in the standard complex plane. One may however consider an
extended complex plane, containing a point at infinity, which is such that every straight line
passes through it, but no half plane contains it.

There exists an alternative geometric representation for complex numbers in which every element
of Ĉ has a concrete representation, and in which the extended complex plane introduced above
makes intuitive sense. This representation is based on the stereographic projection, which is
constructed as follows.
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- Consider the unit sphere S in R3 given by x2
1 + x2

2 + x2
3 = 1

- To every point Z = (x1, x2, x3) in S except for (0, 0, 1), assign w ∈ C according to the
transformation

w =
x+ iy

1− x3

(18)

The transformation is one-to-one, as can be shown by straightforward algebra:

|w|2 = x2 + y2

(1− x3)
2 =

1 + x3

1− x3

⇐⇒ x3 =
|w|2 − 1

|w|2 + 1

Likewise, simple computations give

x =
w + w̄

1 + |w|2
, y = −i

w − w̄

1 + |w|2

- If one assigns ∞ to (0, 0, 1), we have an homeomorphism between S and Ĉ.

• Now, if we identify the x-y plane with the complex plane, the transformation defined by Eq.
(18) has a simple geometric interpretation. Consider the point N, with coordinates (0, 0, 1), and
any point Z = (x, y, z) on S. Then w is the point which corresponds to the intersection of the
line in R3 through N and Z with the x-y plane, as shown in Figure 2.

Let us prove this. A parametric equation for the line through Z and N in R3 is

r(t) = (0, 0, 1) + t (x1, x2, x3 − 1)

The line intersects the x-y plane for t such that

1 + t (x3 − 1) = 0 ⇐⇒ t =
1

1− x3

This corresponds to the point in R3 with coordinates

r

(
1

1− x3

)
=

(
x1

1− x3

,
x2

1− x3

, 0

)
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As we already mentioned, the bijective projection from any point Z on the sphere- except for
N - to any point w in the x-y plane (or complex plane) is called a stereographic projection.

• You can convince yourself, first geometrically and then algebraically, that every straight line
in the x-y plane is transformed into a circle on S which passes through N by the stereographic
projection.

More generally, any circle on S is mapped either to a circle or to a line in the x-y plane.
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